Three Dimensional Vortex Approximation Construction and ε-Level Estimates for the Ginzburg-Landau Functional
Abstract
We provide a quantitative three dimensional vortex approximation construction for the Ginzburg-Landau functional. This construction gives an approximation of vortex lines coupled to a lower bound for the energy, optimal to leading order, analogous to the two dimensional ones, and valid for the first time at the epsilon-level. These tools allow for a new approach to analyzing the behavior of global minimizers for the Ginzburg-Landau functional below and near the first critical field in three dimensions, followed in Roman (On the first critical field in the three dimensional Ginzburg-Landau model of superconductivity, 2018). In addition, they allow one to obtain an epsilon-quantitative product estimate for the study of Ginzburg-Landau dynamics.
Más información
| Título según WOS: | ID WOS:000456309400006 Not found in local WOS DB |
| Título de la Revista: | ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS |
| Volumen: | 231 |
| Número: | 3 |
| Editorial: | Springer |
| Fecha de publicación: | 2019 |
| Página de inicio: | 1531 |
| Página final: | 1614 |
| DOI: |
10.1007/s00205-018-1304-7 |
| Notas: | ISI |