Three Dimensional Vortex Approximation Construction and ε-Level Estimates for the Ginzburg-Landau Functional

Abstract

We provide a quantitative three dimensional vortex approximation construction for the Ginzburg-Landau functional. This construction gives an approximation of vortex lines coupled to a lower bound for the energy, optimal to leading order, analogous to the two dimensional ones, and valid for the first time at the epsilon-level. These tools allow for a new approach to analyzing the behavior of global minimizers for the Ginzburg-Landau functional below and near the first critical field in three dimensions, followed in Roman (On the first critical field in the three dimensional Ginzburg-Landau model of superconductivity, 2018). In addition, they allow one to obtain an epsilon-quantitative product estimate for the study of Ginzburg-Landau dynamics.

Más información

Título según WOS: ID WOS:000456309400006 Not found in local WOS DB
Título de la Revista: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
Volumen: 231
Número: 3
Editorial: Springer
Fecha de publicación: 2019
Página de inicio: 1531
Página final: 1614
DOI:

10.1007/s00205-018-1304-7

Notas: ISI