Conforming and nonconforming virtual element methods for fourth order nonlocal reaction diffusion equation
Abstract
In this work, we have designed conforming and nonconforming virtual element methods (VEM) to approximate non-stationary nonlocal biharmonic equation on general shaped domain. By employing Faedo-Galerkin technique, we have proved the existence and uniqueness of the continuous weak formulation. Upon applying Brouwer's fixed point theorem, the well-posedness of the fully discrete scheme is derived. Further, following [J. Huang and Y. Yu, A medius error analysis for nonconforming virtual element methods for Poisson and biharmonic equations, J. Comput. Appl. Math. 386 (2021) 113229], we have introduced Enrichment operator and derived a priori error estimates for fully discrete schemes on polygonal domains, not necessarily convex. The proposed error estimates are justified with some benchmark examples.
Más información
| Título según WOS: | Conforming and nonconforming virtual element methods for fourth order nonlocal reaction diffusion equation | 
| Título de la Revista: | MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES | 
| Volumen: | 33 | 
| Número: | 10 | 
| Editorial: | WORLD SCIENTIFIC PUBL CO PTE LTD | 
| Fecha de publicación: | 2023 | 
| Página de inicio: | 2035 | 
| Página final: | 2083 | 
| DOI: | 
 10.1142/S0218202523500483  | 
| Notas: | ISI |