How to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems

Cortázar C.; Elgueta, M; Rossi JD; Wolanski N.

Abstract

We present a model for nonlocal diffusion with Neumann boundary conditions in a bounded smooth domain prescribing the flux through the boundary. We study the limit of this family of nonlocal diffusion operators when a rescaling parameter related to the kernel of the nonlocal operator goes to zero. We prove that the solutions of this family of problems converge to a solution of the heat equation with Neumann boundary conditions. © 2007 Springer-Verlag.

Más información

Título según WOS: How to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems
Título según SCOPUS: How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems
Título de la Revista: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
Volumen: 187
Número: 1
Editorial: Springer
Fecha de publicación: 2008
Página de inicio: 137
Página final: 156
Idioma: English
URL: http://link.springer.com/10.1007/s00205-007-0062-8
DOI:

10.1007/s00205-007-0062-8

Notas: ISI, SCOPUS