How to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems
Abstract
We present a model for nonlocal diffusion with Neumann boundary conditions in a bounded smooth domain prescribing the flux through the boundary. We study the limit of this family of nonlocal diffusion operators when a rescaling parameter related to the kernel of the nonlocal operator goes to zero. We prove that the solutions of this family of problems converge to a solution of the heat equation with Neumann boundary conditions. © 2007 Springer-Verlag.
Más información
Título según WOS: | How to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems |
Título según SCOPUS: | How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems |
Título de la Revista: | ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS |
Volumen: | 187 |
Número: | 1 |
Editorial: | Springer |
Fecha de publicación: | 2008 |
Página de inicio: | 137 |
Página final: | 156 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s00205-007-0062-8 |
DOI: |
10.1007/s00205-007-0062-8 |
Notas: | ISI, SCOPUS |