ON SHARP CONDITIONS FOR THE GLOBAL STABILITY OF A DIFFERENCE EQUATION SATISFYING THE YORKE CONDITION
Abstract
Continuing our previous investigations, we give simple sufficient conditions for the global stability of the zero solution of the difference equation x n+1 = qx n + n(x n x n-k), n, where the nonlinear functions n satisfy the Yorke condition. For every positive integer k, we represent the interval (0, 1] as the union of [(2k + 2)/3] disjoint subintervals, and, for q from each subinterval, we present a global-stability condition in explicit form. The conditions obtained are sharp for the class of equations satisfying the Yorke condition. © 2008 Springer Science+Business Media, Inc.
Más información
| Título según WOS: | ON SHARP CONDITIONS FOR THE GLOBAL STABILITY OF A DIFFERENCE EQUATION SATISFYING THE YORKE CONDITION |
| Título según SCOPUS: | On sharp conditions for the global stability of a difference equation satisfying the Yorke condition |
| Título de la Revista: | UKRAINIAN MATHEMATICAL JOURNAL |
| Volumen: | 60 |
| Número: | 1 |
| Editorial: | Springer |
| Fecha de publicación: | 2008 |
| Página de inicio: | 78 |
| Página final: | 90 |
| Idioma: | English |
| URL: | http://link.springer.com/10.1007/s11253-008-0043-6 |
| DOI: |
10.1007/s11253-008-0043-6 |
| Notas: | ISI, SCOPUS |