ON SHARP CONDITIONS FOR THE GLOBAL STABILITY OF A DIFFERENCE EQUATION SATISFYING THE YORKE CONDITION

Nenya, OI; Tkachenko, VI; Trofymchuk, SI

Abstract

Continuing our previous investigations, we give simple sufficient conditions for the global stability of the zero solution of the difference equation x n+1 = qx n + n(x n x n-k), n, where the nonlinear functions n satisfy the Yorke condition. For every positive integer k, we represent the interval (0, 1] as the union of [(2k + 2)/3] disjoint subintervals, and, for q from each subinterval, we present a global-stability condition in explicit form. The conditions obtained are sharp for the class of equations satisfying the Yorke condition. © 2008 Springer Science+Business Media, Inc.

Más información

Título según WOS: ON SHARP CONDITIONS FOR THE GLOBAL STABILITY OF A DIFFERENCE EQUATION SATISFYING THE YORKE CONDITION
Título según SCOPUS: On sharp conditions for the global stability of a difference equation satisfying the Yorke condition
Título de la Revista: UKRAINIAN MATHEMATICAL JOURNAL
Volumen: 60
Número: 1
Editorial: Springer
Fecha de publicación: 2008
Página de inicio: 78
Página final: 90
Idioma: English
URL: http://link.springer.com/10.1007/s11253-008-0043-6
DOI:

10.1007/s11253-008-0043-6

Notas: ISI, SCOPUS