Depth-Adjustable Magnetostructural Phase Transition in Fe60V40 Thin Films
Abstract
Phase transitions occurring within spatially confined regions can be useful for generating nanoscale material property modulations. Here we describe a magneto-structural phase transition in a binary alloy, where a structural transition from short-range order (SRO) to body centered cubic (bcc) results in the formation of depth-adjustable ferromagnetic layers, which reveal application-relevant magnetic properties of high saturation magnetization (M-s) and low Gilbert damping (alpha). Here we use Fe60V40 binary alloy films which transform from initially M-s = 17 kA/m (SRO structure) to 747 kA/m (bcc structure) driven by atomic displacements caused by penetrating ions. Simulations show that an estimated similar to 1 displacement per atom triggers a structural transition, forming homogeneous ferromagnetic layers. The thickness of a ferromagnetic layer increases as a step-like function of the ion fluence. Microwave excitations of the ferromagnetic/non-ferromagnetic layered system reveals an alpha = 0.0027 +/- 0.0001. The combination of nanoscale spatial confinement, low alpha, and high M-s provides a pathway for the rapid patterning of magnetic and microwave device elements.
Más información
Título según WOS: | Depth-Adjustable Magnetostructural Phase Transition in Fe60V40 Thin Films |
Título de la Revista: | ACS APPLIED ELECTRONIC MATERIALS |
Volumen: | 4 |
Número: | 8 |
Editorial: | AMER CHEMICAL SOC |
Fecha de publicación: | 2022 |
Página de inicio: | 3860 |
Página final: | 3869 |
DOI: |
10.1021/acsaelm.2c00499 |
Notas: | ISI |