Hypoxic Regulation of the Large-Conductance, Calcium and Voltage-Activated Potassium Channel, BK
Abstract
Hypoxia is a condition characterized by a reduction of cellular oxygen levels derived from alterations in oxygen balance. Hypoxic events trigger changes in cell-signaling cascades, oxidative stress, activation of pro-inflammatory molecules, and growth factors, influencing the activity of various ion channel families and leading to diverse cardiovascular diseases such as myocardial infarction, ischemic stroke, and hypertension. The large-conductance, calcium and voltage-activated potassium channel (BK) has a central role in the mechanism of oxygen (O-2) sensing and its activity has been related to the hypoxic response. BK channels are ubiquitously expressed, and they are composed by the pore-forming alpha subunit and the regulatory subunits beta (beta 1-beta 4), gamma (gamma 1-gamma 4), and LINGO1. The modification of biophysical properties of BK channels by beta subunits underly a myriad of physiological function of these proteins. Hypoxia induces tissue-specific modifications of BK channel alpha and beta subunits expression. Moreover, hypoxia modifies channel activation kinetics and voltage and/or calcium dependence. The reported effects on the BK channel properties are associated with events such as the increase of reactive oxygen species (ROS) production, increases of intracellular Calcium ([Ca2+](i)), the regulation by Hypoxia-inducible factor 1 alpha (HIF-1 alpha), and the interaction with hemeproteins. Bronchial asthma, chronic obstructive pulmonary diseases (COPD), and obstructive sleep apnea (OSA), among others, can provoke hypoxia. Untreated OSA patients showed a decrease in BK-beta 1 subunit mRNA levels and high arterial tension. Treatment with continuous positive airway pressure (CPAP) upregulated beta 1 subunit mRNA level, decreased arterial pressures, and improved endothelial function coupled with a reduction in morbidity and mortality associated with OSA. These reports suggest that the BK channel has a role in the response involved in hypoxia-associated hypertension derived from OSA. Thus, this review aims to describe the mechanisms involved in the BK channel activation after a hypoxic stimulus and their relationship with disorders like OSA. A deep understanding of the molecular mechanism involved in hypoxic response may help in the therapeutic approaches to treat the pathological processes associated with diseases involving cellular hypoxia.
Más información
| Título según WOS: | Hypoxic Regulation of the Large-Conductance, Calcium and Voltage-Activated Potassium Channel, BK |
| Título de la Revista: | FRONTIERS IN PHYSIOLOGY |
| Volumen: | 12 |
| Editorial: | FRONTIERS MEDIA SA |
| Fecha de publicación: | 2021 |
| DOI: |
10.3389/fphys.2021.780206 |
| Notas: | ISI |