Quaternion-valued recurrent projection neural networks on unit quaternions

Valle, Marcos Eduardo; Lobo, Rodolfo Anibal

Abstract

Hypercomplex-valued neural networks, including quaternion-valued neural networks, can treat multi-dimensional data as a single entity. In this paper, we present the quaternion-valued recurrent projection neural networks (QRPNNs). Briefly, the QRPNNs are obtained by combining the non-local projection learning with the quaternion-valued recurrent correlation neural network (QRCNNs). We show that the QRPNNs overcome the cross-talk problem of the QRCNNs. Thus, they are appropriate to implement associative memories. Furthermore, computational experiments reveal that the QRPNNs exhibit greater storage capacity and noise tolerance than their corresponding QRCNNs. (c) 2020 Elsevier B.V. All rights reserved.

Más información

Título según WOS: ID WOS:000577368200009 Not found in local WOS DB
Título de la Revista: THEORETICAL COMPUTER SCIENCE
Volumen: 843
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2020
Página de inicio: 136
Página final: 152
DOI:

10.1016/j.tcs.2020.08.033

Notas: ISI