Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty

Breznau, Nate; Rinke, Eike Mark; Wuttke, Alexander; Nguyen, Hung H.V.; Adem, Muna; Adriaans, Jule; Alvarez-Benjumea, Amalia; Andersen, Henrik K.; Auer, Daniel; Azevedo, Flavio; Bahnsen, Oke; Balzer, Dave; Bauer, Gerrit; Bauer, Paul C.; Baumann, Markus; et. al.

Abstract

This study explores how researchers' analytical choices affect the reliability of scientific findings. Most discussions of reliability problems in science focus on systematic biases. We broaden the lens to emphasize the idiosyncrasy of conscious and unconscious decisions that researchers make during data analysis. We coordinated 161 researchers in 73 research teams and observed their research decisions as they used the same data to independently test the same prominent social science hypothesis: that greater immigration reduces support for social policies among the public. In this typical case of social science research, research teams reported both widely diverging numerical findings and substantive conclusions despite identical start conditions. Researchers' expertise, prior beliefs, and expectations barely predict the wide variation in research outcomes. More than 95% of the total variance in numerical results remains unexplained even after qualitative coding of all identifiable decisions in each team's workflow. This reveals a universe of uncertainty that remains hidden when considering a single study in isolation. The idiosyncratic nature of how researchers' results and conclusions varied is a previously underappreciated explanation for why many scientific hypotheses remain contested. These results call for greater epistemic humility and clarity in reporting scientific findings.

Más información

Título según WOS: Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty
Título según SCOPUS: ID SCOPUS_ID:85141004640 Not found in local SCOPUS DB
Título de la Revista: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Volumen: 119
Editorial: NATL ACAD SCIENCES
Fecha de publicación: 2022
DOI:

10.1073/PNAS.2203150119

Notas: ISI, SCOPUS - ISI