ASYMPTOTIC EQUIVALENCE AND KOBAYASHI-TYPE ESTIMATES FOR NONAUTONOMOUS MONOTONE OPERATORS IN BANACH SPACES
Abstract
We provide a sharp generalization to the nonautonomous case of the well-known Kobayashi estimate for proximal iterates associated with maximal monotone operators. We then derive a bound for the distance between a continuous-in-time trajectory, namely the solution to the differential inclusion ? + A(t)x ? 0, and the corresponding proximal iterations. We also establish continuity properties with respect to time of the nonautonomous flow under simple assumptions by revealing their link with the function t ? A(t). Moreover, our sharper estimations allow us to derive equivalence results which are useful to compare the asymptotic behavior of the trajectories defined by different evolution systems. We do so by extending a classical result of Passty to the nonautonomous setting.
Más información
| Título según WOS: | ASYMPTOTIC EQUIVALENCE AND KOBAYASHI-TYPE ESTIMATES FOR NONAUTONOMOUS MONOTONE OPERATORS IN BANACH SPACES | 
| Título según SCOPUS: | Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces | 
| Título de la Revista: | DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS | 
| Volumen: | 25 | 
| Número: | 4 | 
| Editorial: | AMER INST MATHEMATICAL SCIENCES-AIMS | 
| Fecha de publicación: | 2009 | 
| Página de inicio: | 1109 | 
| Página final: | 1128 | 
| Idioma: | English | 
| URL: | http://www.aimsciences.org/journals/displayArticles.jsp?paperID=4489 | 
| DOI: | 
 10.3934/dcds.2009.25.1109  | 
| Notas: | ISI, SCOPUS |