Multiplicity of solutions for a fourth order problem with exponential nonlinearity
Abstract
Let B be the unit ball in RN, N = 5 and n be the exterior unit normal vector on the boundary. We consider radial solutions to?2 u = ? eu in B, u = 0 and frac(? u, ? n) = 0 on ? B, where ? = 0. We show that there exists a unique ?S > 0 such that if ? = ?S there is a radial singular solution. If 5 = N = 12 then for ? = ?S there exist infinitely many regular radial solutions and as ? ? ?S the number of such solutions goes to infinity. If N = 13 we prove uniqueness of smooth radial solutions. We derive similar results for the same equation with Navier boundary conditions. © 2009 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Multiplicity of solutions for a fourth order problem with exponential nonlinearity |
Título según SCOPUS: | Multiplicity of solutions for a fourth order problem with exponential nonlinearity |
Título de la Revista: | JOURNAL OF DIFFERENTIAL EQUATIONS |
Volumen: | 247 |
Número: | 11 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2009 |
Página de inicio: | 3136 |
Página final: | 3162 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022039609002836 |
DOI: |
10.1016/j.jde.2009.07.023 |
Notas: | ISI, SCOPUS |