Generating higher-order Lie algebras by expanding Maurer-Cartan forms
Abstract
By means of a generalization of the Maurer-Cartan expansion method, we construct a procedure to obtain expanded higher-order Lie algebras. The expanded higher-order Maurer-Cartan equations for the case G=V 0?V 1 are found. A dual formulation for the S-expansion multialgebra procedure is also considered. The expanded higher-order Maurer-Cartan equations are recovered from S-expansion formalism by choosing a special semigroup. This dual method could be useful in finding a generalization to the case of a generalized free differential algebra, which may be relevant for physical applications in, e.g., higher-spin gauge theories. © 2009 American Institute of Physics.
Más información
Título según WOS: | Generating higher-order Lie algebras by expanding Maurer-Cartan forms |
Título según SCOPUS: | Generating higher-order Lie algebras by expanding Maurer-Cartan forms |
Título de la Revista: | JOURNAL OF MATHEMATICAL PHYSICS |
Volumen: | 50 |
Número: | 12 |
Editorial: | AMER INST PHYSICS |
Fecha de publicación: | 2009 |
Idioma: | English |
URL: | http://scitation.aip.org/content/aip/journal/jmp/50/12/10.1063/1.3272997 |
DOI: |
10.1063/1.3272997 |
Notas: | ISI, SCOPUS |