Generating higher-order Lie algebras by expanding Maurer-Cartan forms

Caroca R.; Merino, N; Pérez, A.; Salgado, P.

Abstract

By means of a generalization of the Maurer-Cartan expansion method, we construct a procedure to obtain expanded higher-order Lie algebras. The expanded higher-order Maurer-Cartan equations for the case G=V 0?V 1 are found. A dual formulation for the S-expansion multialgebra procedure is also considered. The expanded higher-order Maurer-Cartan equations are recovered from S-expansion formalism by choosing a special semigroup. This dual method could be useful in finding a generalization to the case of a generalized free differential algebra, which may be relevant for physical applications in, e.g., higher-spin gauge theories. © 2009 American Institute of Physics.

Más información

Título según WOS: Generating higher-order Lie algebras by expanding Maurer-Cartan forms
Título según SCOPUS: Generating higher-order Lie algebras by expanding Maurer-Cartan forms
Título de la Revista: JOURNAL OF MATHEMATICAL PHYSICS
Volumen: 50
Número: 12
Editorial: AMER INST PHYSICS
Fecha de publicación: 2009
Idioma: English
URL: http://scitation.aip.org/content/aip/journal/jmp/50/12/10.1063/1.3272997
DOI:

10.1063/1.3272997

Notas: ISI, SCOPUS