Periodic solutions in a 2D-symmetric Hamiltonian system through reduction and averaging method

Abstract

We study a type of perturbed polynomial Hamiltonian system in 1:1 resonance. The perturbation consists of a homogeneous quartic potential invariant by rotations of (Formula presented.) radians. The existence of periodic solutions is established using reduction and averaging theories. The different types of periodic solutions, linear stability, and bifurcation curves are characterized in terms of the parameters. Finally, some choreography of bifurcations are obtained, showing in detail the evolution of the phase flow. © 2024 Informa UK Limited, trading as Taylor & Francis Group.

Más información

Título según WOS: Periodic solutions in a 2D-symmetric Hamiltonian system through reduction and averaging method
Título según SCOPUS: Periodic solutions in a 2D-symmetric Hamiltonian system through reduction and averaging method
Título de la Revista: Dynamical Systems
Volumen: 39
Número: 4
Editorial: Taylor and Francis Ltd.
Fecha de publicación: 2024
Página de inicio: 610
Página final: 629
Idioma: English
DOI:

10.1080/14689367.2024.2349563

Notas: ISI, SCOPUS