Decomposition of multicorrelation sequences and joint ergodicity

Donoso, SEBASTIaN; Ferre Moragues, A. F.; Koutsogiannis, A.; Sun, W.

Abstract

We show that, under finitely many ergodicity assumptions, any multicorrelation sequence defined by invertible measure-preserving Z(d) -actions with multivariable integer polynomial iterates is the sum of a nilsequence and a nullsequence, extending a recent result of the second author. To this end, we develop a new seminorm bound estimate for multiple averages by improving the results in a previous work of the first, third, and fourth authors. We also use this approach to obtain new criteria for joint ergodicity of multiple averages with multivariable polynomial iterates on Z(d) -systems.

Más información

Título según WOS: Decomposition of multicorrelation sequences and joint ergodicity
Título de la Revista: ERGODIC THEORY AND DYNAMICAL SYSTEMS
Volumen: 44
Número: 2
Editorial: CAMBRIDGE UNIV PRESS
Fecha de publicación: 2024
Página de inicio: 432
Página final: 480
DOI:

10.1017/etds.2023.30

Notas: ISI