Decomposition of multicorrelation sequences and joint ergodicity
Abstract
We show that, under finitely many ergodicity assumptions, any multicorrelation sequence defined by invertible measure-preserving Z(d) -actions with multivariable integer polynomial iterates is the sum of a nilsequence and a nullsequence, extending a recent result of the second author. To this end, we develop a new seminorm bound estimate for multiple averages by improving the results in a previous work of the first, third, and fourth authors. We also use this approach to obtain new criteria for joint ergodicity of multiple averages with multivariable polynomial iterates on Z(d) -systems.
Más información
Título según WOS: | Decomposition of multicorrelation sequences and joint ergodicity |
Título de la Revista: | ERGODIC THEORY AND DYNAMICAL SYSTEMS |
Volumen: | 44 |
Número: | 2 |
Editorial: | CAMBRIDGE UNIV PRESS |
Fecha de publicación: | 2024 |
Página de inicio: | 432 |
Página final: | 480 |
DOI: |
10.1017/etds.2023.30 |
Notas: | ISI |