Decomposition of multicorrelation sequences and joint ergodicity
Abstract
We show that, under finitely many ergodicity assumptions, any multicorrelation sequence defined by invertible measure-preserving -actions with multivariable integer polynomial iterates is the sum of a nilsequence and a nullsequence, extending a recent result of the second author. To this end, we develop a new seminorm bound estimate for multiple averages by improving the results in a previous work of the first, third, and fourth authors. We also use this approach to obtain new criteria for joint ergodicity of multiple averages with multivariable polynomial iterates on -systems. © The Author(s), 2023. Published by Cambridge University Press.
Más información
| Título según WOS: | Decomposition of multicorrelation sequences and joint ergodicity |
| Título según SCOPUS: | Decomposition of multicorrelation sequences and joint ergodicity |
| Título de la Revista: | Ergodic Theory and Dynamical Systems |
| Volumen: | 44 |
| Número: | 2 |
| Editorial: | Cambridge University Press |
| Fecha de publicación: | 2024 |
| Página de inicio: | 432 |
| Página final: | 480 |
| Idioma: | English |
| DOI: |
10.1017/etds.2023.30 |
| Notas: | ISI, SCOPUS |