AVERAGES OF COMPLETELY MULTIPLICATIVE FUNCTIONS OVER THE GAUSSIAN INTEGERS - A DYNAMICAL APPROACH
Abstract
We prove a pointwise convergence result for additive ergodic averages associated with certain multiplicative actions of the Gaussian integers. We derive several applications in dynamics and number theory, including: (i) Wirsings theorem for Gaussian integers: if f : G ? R is a bounded completely multiplicative function, then the following limit exists:(Formula Presented) (ii) An answer to a special case of a question of Frantzikinakis and Host: for any completely multiplicative real-valued function f : N ? R, the following limit exists: (Formula Presented) (iii) A variant of a theorem of Bergelson and Richter on ergodic averages along the ? function: if (X, T) is a uniquely ergodic system with unique invariant measure ?, then for any x ? X and f ? C(X), (Formula Presented) © 2024 American Mathematical Society.
Más información
| Título según WOS: | AVERAGES OF COMPLETELY MULTIPLICATIVE FUNCTIONS OVER THE GAUSSIAN INTEGERS - A DYNAMICAL APPROACH |
| Título según SCOPUS: | AVERAGES OF COMPLETELY MULTIPLICATIVE FUNCTIONS OVER THE GAUSSIAN INTEGERS A DYNAMICAL APPROACH |
| Título de la Revista: | Transactions of the American Mathematical Society |
| Volumen: | 377 |
| Número: | 10 |
| Editorial: | American Mathematical Society |
| Fecha de publicación: | 2024 |
| Página de inicio: | 7081 |
| Página final: | 7115 |
| Idioma: | English |
| DOI: |
10.1090/tran/9184 |
| Notas: | ISI, SCOPUS |