Maxiset in sup-norm for kernel estimators

Bertin, K; Rivoirard V.

Abstract

In the Gaussian white noise model, we study the estimation of an unknown multidimensional function f in the uniform norm by using kernel methods. We determine the sets of functions that are well estimated at the rates (log n/n)ß/(2ß+d) and n-ß/(2ß+d) by kernel estimators. These sets are called maxisets. Then, we characterize the maxisets associated to kernel estimators and to the Lepski procedure for the rate of convergence (log n/n)ß/(2ß+d) in terms of Besov and Hölder spaces of regularity ß. Using maxiset results, optimal choices for the bandwidth parameter of kernel rules are derived. Performances of these rules are studied from the numerical point of view. © Sociedad de Estadística e Investigación Operativa 2008.

Más información

Título según WOS: Maxiset in sup-norm for kernel estimators
Título según SCOPUS: Maxiset in sup-norm for kernel estimators
Título de la Revista: TEST
Volumen: 18
Número: 3
Editorial: Springer
Fecha de publicación: 2009
Página de inicio: 475
Página final: 496
Idioma: English
URL: http://link.springer.com/10.1007/s11749-008-0109-7
DOI:

10.1007/s11749-008-0109-7

Notas: ISI, SCOPUS