A Novel Filtering Method for Hammerstein-Wiener State-Space Systems
Abstract
In this paper, we develop a novel filtering algorithm for Hammerstein-Wiener State-Space Systems. The likelihood function of the noisy nonlinear output signal given the system state is approximated by a Gaussian-Legendre quadrature rule. This approximation produces an explicit model of this likelihood function with a Gaussian Sum structure. Based on the general Bayesian filtering framework, we develop a Gaussian Sum Filter algorithm to obtain the a posteriori probability density function of the state given the current and past nonlinear output. With the characterization of the a posteriori probability function, we can obtain the associated statistics of the state. Finally, we present numerical examples to illustrate the benefits of our proposal.
Más información
| Título según WOS: | A Novel Filtering Method for Hammerstein-Wiener State-Space Systems |
| Título de la Revista: | 2021 IEEE CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (IEEE CHILECON 2021) |
| Editorial: | IEEE |
| Fecha de publicación: | 2021 |
| Página de inicio: | 57 |
| Página final: | 63 |
| DOI: |
10.1109/CHILECON54041.2021.9702967 |
| Notas: | ISI |