InSAR Monitoring Using Persistent Scatterer Interferometry (PSI) and Small Baseline Subset (SBAS) Techniques for Ground Deformation Measurement in Metropolitan Area of Concepción, Chile

Giorgini, Eugenia; Orellana, Felipe; Arratia, Camila; Tavasci, Luca; Montalva, Gonzalo; Moreno, Marcos; Gandolfi, Stefano

Abstract

InSAR capabilities allow us to understand ground deformations in large metropolitan areas, this is key to assessing site conditions in areas in an inherently expanding context. The multi-temporal interferometry of SAR data records ground surface displacement velocities over large metropolitan areas, identifying anomalous and potential geological hazards. The metropolitan city of Concepcion, Chile, is an alluvial basin in one of the world's most seismically active subduction zones, where many subduction earthquakes have occurred throughout history. In this study, we monitored the deformations of the ground surface in the metropolitan area of Concepcion using two interferometric techniques, the first being Persistent Scatterer Interferometry (PSI) and the second, the Small Baseline Subset (SBAS) technique. To do this, we have used the same Sentinel-1 dataset, obtaining ground movement rates between 2019 and 2021. The velocities were aligned with the GNSS station available in the area. Ground deformation patterns show local deformations depending on factors such as soil type and heterogeneity, and regional deformations due to geographical location in the subduction area. Our results highlight the similarity of the deformation rates obtained with different processing techniques and have also allowed us to identify areas of deformation and compare them to site conditions. These results are essential to evaluate ground conditions and contribute to urban planning and risk management in highly seismic areas.

Más información

Título según WOS: InSAR Monitoring Using Persistent Scatterer Interferometry (PSI) and Small Baseline Subset (SBAS) Techniques for Ground Deformation Measurement in Metropolitan Area of Concepción, Chile
Título de la Revista: Remote Sensing
Volumen: 15
Número: 24
Editorial: MDPI
Fecha de publicación: 2023
DOI:

10.3390/rs15245700

Notas: ISI