The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters
Abstract
We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg(2). reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations sigma(8)=0.819 +/- 0.015 at 1.8% precision, S-8 equivalent to sigma(8)(Omega(m)/0.3)(0.5)=0.840 +/- 0.028 and the Hubble constant H-0=(68.3 +/- 1.1)kms(-1)Mpc(-1) at 1.6% precision. A joint constraint with CMB lensing measured by the Planck satellite yields even more precise values: sigma(8)=0.812 +/- 0.013, S-8 equivalent to sigma(8)(Omega m/0.3)(0.5)=0.831 +/- 0.023 and H-0=(68.1 +/- 1.0)kms(-1)Mpc(-1). These measurements agree well with Lambda CDM-model extrapolations from the CMB anisotropies measured by Planck. To compare these constraints to those from the KiDS, DES, and HSC galaxy surveys, we revisit those data sets with a uniform set of assumptions, and find S-8 from all three surveys are lower than that from ACT+Planck lensing by varying levels ranging from 1.7-2.1 sigma. These results motivate further measurements and comparison, not just between the CMB anisotropies and galaxy lensing, but also between CMB lensing probing z similar to 0.5-5 on mostly-linear scales and galaxy lensing at z similar to 0.5 on smaller scales. We combine our CMB lensing measurements with CMB anisotropies to constrain extensions of Lambda CDM, limiting the sum of the neutrino masses to & sum;m(nu)<0.12 eV (95% c.l.), for example. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the Lambda CDM model, while paving a promising path for neutrino physics with gravitational lensing from upcoming ground-based CMB surveys
Más información
Título según WOS: | The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters |
Título de la Revista: | ASTROPHYSICAL JOURNAL |
Volumen: | 962 |
Número: | 2 |
Editorial: | IOP PUBLISHING LTD |
Fecha de publicación: | 2024 |
DOI: |
10.3847/1538-4357/acff5f |
Notas: | ISI |