Leveraging liquid-liquid phase separation and volume modulation to regulate the enzymatic activity of formate dehydrogenase
Abstract
Engineering of reaction media is an exciting alternative for modulating kinetic properties of biocatalytic re-actions. We addressed the combined effect of an aqueous two-phase system (ATPS) and high hydrostatic pressure on the kinetics of the Candida boidinii formate dehydrogenase-catalyzed oxidation of formate to CO2. Pressuri-zation was found to lead to an increase of the binding affinity (decrease of KM, respectively) and a decrease of the turnover number, kcat. The experimental approach was supported using thermodynamic modeling with the electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) equation of state to predict the liquid-liquid phase separation and the molecular crowding effect of the ATPS on the kinetic properties. The ePC-SAFT was able to quantitatively predict the KM-values of the substrate in both phases at 1 bar as well as up to a pressure of 1000 bar. The framework presented enables significant advances in bioprocess engineering, including the design of processes with significantly fewer experiments and trial-and-error approaches.
Más información
Título según WOS: | ID WOS:001106271200001 Not found in local WOS DB |
Título de la Revista: | BIOPHYSICAL CHEMISTRY |
Volumen: | 304 |
Editorial: | Elsevier |
Fecha de publicación: | 2024 |
DOI: |
10.1016/j.bpc.2023.107128 |
Notas: | ISI |