The role of identifiability in empirical research

Perticara, Marcela; Fisher, William; Pendrill, Leslie

Keywords: Partial identification, Causal inference, Self-selection bias, Finite sample space

Abstract

This chapter discusses the general concepts of identification and partial identification of statistical models. We elucidate the identification restrictions to endow with meaning the parameters of interest of the fixed-effects one-parameter logistic model with guessing (1PL-G), a model used in educational measurement. We also review the restrictions for identifying the average treatment effect (ATE) in evaluating a policy or program. To address the fundamental problem of causal inference, we also present a partial identification analysis of the ATE. On the basis of the results, we emphasize the relevance of an identification analysis and the usefulness of considering a partial identification approach in causal inference.

Más información

Editorial: De Gruyter Oldenbourg
Fecha de publicación: 2024
Página de inicio: 133
Página final: 158
Idioma: Inglés
URL: https://doi.org/10.1515/9783111036496-004
DOI:

https://doi.org/10.1515/9783111036496-004