Analytics-driven complaint prioritisation via deep learning and multicriteria decision-making
Abstract
Complaint analysis is an essential business analytics application because complaints have a strong influence on customer satisfaction (CSAT). However, the process of categorising and prioritising complaints manually can be extremely time consuming for large companies. In this paper, we propose a framework for automatic complaint labelling and prioritisation using text analytics and operational research techniques. The labelling step of the training set is performed using a simple weighting approach from the multiple-criteria decision-making (MCDM) literature, while transformer-based deep learning (DL) techniques are used for text classification. We define two priority classes, namely, urgent complaints and other claims, and develop a system for automatic complaint categorisation. Our experimental results show that excellent predictive performance can be achieved with state-of-the-art text classification models. In particular, BETO, a bidirectional encoder representations from transformers (BERT) model trained on a large Spanish corpus, reaches an accuracy (ACCU) and area under the curve (AUC) of 92.1% and 0.9785, respectively. This positive result translates into a successful complaint prioritisation scheme, which improves CSAT and reduces the churn rate.(c) 2023 Elsevier B.V. All rights reserved.
Más información
Título según WOS: | Analytics-driven complaint prioritisation via deep learning and multicriteria decision-making |
Título de la Revista: | EUROPEAN JOURNAL OF OPERATIONAL RESEARCH |
Volumen: | 312 |
Número: | 3 |
Editorial: | Elsevier |
Fecha de publicación: | 2024 |
Página de inicio: | 1108 |
Página final: | 1118 |
DOI: |
10.1016/j.ejor.2023.08.027 |
Notas: | ISI |