Prym-Tyurin varieties via Hecke algebras
Abstract
Let G denote a finite group and : Z ? Y a Galois covering of smooth projective curves with Galois group G. For every subgroup H of G there is a canonical action of the corresponding Hecke algebra H\G/H on the Jacobian of the curve X = Z/H. To each rational irreducible representation of G we associate an idempotent in the Hecke algebra, which induces a correspondence of the curve X and thus an abelian subvariety P of the Jacobian JX. We give sufficient conditions on , H, and the action of G on Z for P to be a Prym-Tyurin variety. We obtain many new families of Prym-Tyurin varieties of arbitrary exponent in this way. © 2009 Walter de Gruyter Berlin · New York.
Más información
Título según WOS: | Prym-Tyurin varieties via Hecke algebras |
Título según SCOPUS: | Prym-tyurin varieties via Hecke algebras |
Título de la Revista: | JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK |
Volumen: | 634 |
Número: | 634 |
Editorial: | WALTER DE GRUYTER GMBH |
Fecha de publicación: | 2009 |
Página de inicio: | 209 |
Página final: | 234 |
Idioma: | English |
URL: | http://www.degruyter.com/view/j/crll.2009.2009.issue-634/crelle.2009.073/crelle.2009.073.xml |
DOI: |
10.1515/CRELLE.2009.073 |
Notas: | ISI, SCOPUS |