Transition from pulses to fronts in the cubic-quintic complex Ginzburg-Landau equation

Gutiérrez P; Escaff, D; Descalzi O.

Abstract

The cubic-quintic complex Ginzburg-Landau is the amplitude equation for systems in the vicinity of an oscillatory sub-critical bifurcation (Andronov-Hopf), and it shows different localized structures. For pulse-type localized structures, we review an approximation scheme that enables us to compute some properties of the structures, like their existence range. From that scheme, we obtain conditions for the existence of pulses in the upper limit of a control parameter. When we study the width of pulses in that limit, the analytical expression shows that it is related to the transition between pulses and fronts.This fact is consistent with numerical simulations. © 2009 The Royal Society.

Más información

Título según WOS: Transition from pulses to fronts in the cubic-quintic complex Ginzburg-Landau equation
Título según SCOPUS: Transition from pulses to fronts in the cubic-quintic complex Ginzburg-Landau equation
Título de la Revista: PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES
Volumen: 367
Número: 1901
Editorial: ROYAL SOC
Fecha de publicación: 2009
Página de inicio: 3227
Página final: 3238
Idioma: English
URL: http://rsta.royalsocietypublishing.org/cgi/doi/10.1098/rsta.2009.0073
DOI:

10.1098/rsta.2009.0073

Notas: ISI, SCOPUS