Prym-Tyurin varieties using self-products of groups

Carocca A.; Lange H.; Rodriguez, RE; Rojas, AM

Abstract

Given Prym-Tyurin varieties of exponent q with respect to a finite group G, a subgroup H and a set of rational irreducible representations of G satisfying some additional properties, we construct a Prym-Tyurin variety of exponent [G : H] q in a natural way. We study an example of this result, starting from the dihedral group Dp for any odd prime p. This generalizes the construction of [H. Lange, S. Recillas, A.M. Rojas, A family of Prym-Tyurin varieties of exponent 3, J. Algebra 289 (2005) 594-613] for p = 3. Finally, we compute the isogeny decomposition of the Jacobian of the curve underlying the above mentioned example. © 2009 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Prym-Tyurin varieties using self-products of groups
Título según SCOPUS: Prym-Tyurin varieties using self-products of groups
Título de la Revista: JOURNAL OF ALGEBRA
Volumen: 322
Número: 4
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2009
Página de inicio: 1251
Página final: 1272
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0021869309002737
DOI:

10.1016/j.jalgebra.2009.05.013

Notas: ISI, SCOPUS