Guo perturbation for symmetric nonnegative circulant matrices
Abstract
Guo[W. Guo, Eigenvalues of nonnegative matrices, Linear Algebra Appl. 266 (1997) 261-270] sets the question: if the list ? = {?1, ?2, ..., ?n} is symmetrically realizable (that is, ? is the spectrum of a symmetric nonnegative matrix), and t > 0, whether or not the list ?t = {?1 + t, ?2 ± t, ?3, ..., ?n} is also symmetrically realizable. In this paper we give an affirmative answer to this question in the case that the realizing matrix is circulant or left circulant. We also give a necessary and sufficient condition for ? to be the spectrum of a nonnegative left circulant matrix. © 2009 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | Guo perturbation for symmetric nonnegative circulant matrices |
| Título según SCOPUS: | Guo perturbation for symmetric nonnegative circulant matrices |
| Título de la Revista: | LINEAR ALGEBRA AND ITS APPLICATIONS |
| Volumen: | 431 |
| Número: | 05-jul |
| Editorial: | Elsevier Science Inc. |
| Fecha de publicación: | 2009 |
| Página de inicio: | 594 |
| Página final: | 607 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0024379509001451 |
| DOI: |
10.1016/j.laa.2009.03.009 |
| Notas: | ISI, SCOPUS |