Wheeler Maps
Abstract
Motivated by challenges in pangenomic read alignment, we propose a generalization of Wheeler graphs that we call Wheeler maps. A Wheeler map stores a text T[1..n] and an assignment of tags to the characters of T such that we can preprocess a pattern P[1..m] and then, given i and j, quickly return all the distinct tags labeling the first characters of the occurrences of P[i..j] in T. For the applications that most interest us, characters with long common contexts are likely to have the same tag, so we consider the number t of runs in the list of tags sorted by their characters positions in the Burrows-Wheeler Transform (BWT) of T. We show how, given a straight-line program with g rules for T, we can build an O(g+r+t)-space Wheeler map, where r is the number of runs in the BWT of T, with which we can preprocess a pattern P[1..m] in O(mlogn) time and then return the k distinct tags for P[i..j] in optimal O(k) time for any given i and j. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
Más información
| Título según WOS: | Wheeler Maps |
| Título según SCOPUS: | Wheeler Maps |
| Título de la Revista: | Lecture Notes in Computer Science |
| Editorial: | Springer Science and Business Media Deutschland GmbH |
| Fecha de publicación: | 2024 |
| Página de inicio: | 178 |
| Página final: | 192 |
| Idioma: | English |
| DOI: |
10.1007/978-3-031-55598-5_12 |
| Notas: | ISI, SCOPUS |