Asymptotic normality of the Nadaraya-Watson estimator for nonstationary functional data and applications to telecommunications

Aspirot, L; Bertin, K; Perera G.

Abstract

We study a nonparametric regression model, where the explanatory variable is nonstationary dependent functional data and the response variable is scalar. Assuming that the explanatory variable is a nonstationary mixture of stationary processes and general conditions of dependence of the observations (implied in particular by weak dependence), we obtain the asymptotic normality of the Nadaraya-Watson estimator. Under some additional regularity assumptions on the regression function, we obtain asymptotic confidence intervals for the regression function. We apply this result to estimate the quality of service for an end-to-end connection on a network. © 2009 Taylor & Francis.

Más información

Título según WOS: Asymptotic normality of the Nadaraya-Watson estimator for nonstationary functional data and applications to telecommunications
Título según SCOPUS: Asymptotic normality of the Nadaraya-Watson estimator for nonstationary functional data and applications to telecommunications
Título de la Revista: JOURNAL OF NONPARAMETRIC STATISTICS
Volumen: 21
Número: 5
Editorial: TAYLOR & FRANCIS LTD
Fecha de publicación: 2009
Página de inicio: 535
Página final: 551
Idioma: English
URL: http://www.tandfonline.com/doi/abs/10.1080/10485250902878655
DOI:

10.1080/10485250902878655

Notas: ISI, SCOPUS