Disconnected Julia set of Halley's method for exponential maps

Cumsille, Patricio; Gonzalez-Marin, Juan; Honorato, Gerardo; Lugo, Diego

Abstract

We investigate the Halley method of exponential maps. Our main result is that, unlike Newton's method, the Julia set of Halley's method may be disconnected when applied to entire maps of form F = pe(q) where p and q are polynomials and q is non-constant. We also describe the nature of the fixed points and classify rational Halley's maps of entire functions.

Más información

Título según WOS: Disconnected Julia set of Halley's method for exponential maps
Título de la Revista: DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL
Volumen: 37
Número: 2
Editorial: TAYLOR & FRANCIS LTD
Fecha de publicación: 2022
Página de inicio: 280
Página final: 294
DOI:

10.1080/14689367.2022.2048633

Notas: ISI