Numerical Discretization of a Darcy-Forchheimer Problem Coupled with a Singular Heat Equation

Allendes, Alejandro; Otarola, Enrique

Abstract

In Lipschitz domains, we study a Darcy-Forchheimer problem coupled with a singular heat equation by a nonlinear forcing term depending on the temperature. By singular we mean that the heat source corresponds to a Dirac measure. We establish the existence of solutions for a model that allows a diffusion coefficient in the heat equation depending on the temperature. For such a model, we also propose a finite element discretization scheme and provide an a priori convergence analysis. In the case that the aforementioned diffusion coefficient is constant, we devise an a posteriori error estimator and investigate reliability and efficiency properties. We conclude by devising an adaptive loop based on the proposed error estimator and presenting numerical experiments.

Más información

Título según WOS: NUMERICAL DISCRETIZATION OF A DARCY-FORCHHEIMER PROBLEM COUPLED WITH A SINGULAR HEAT EQUATION
Volumen: 45
Número: 5
Fecha de publicación: 2023
Página de inicio: A2755
Página final: A2780
Idioma: English
URL: https://epubs.siam.org/doi/10.1137/22M1536340
DOI:

10.1137/22M1536340

Notas: ISI