Poisson Equation and Discrete One-Sided Hilbert Transform for (C, α)-Bounded Operators
Abstract
We characterize the solutions of the Poisson equation and the domain of its associated one-sided Hilbert transform for (C, ?)-bounded operators, ? > 0. This extends known results for power bounded operators to the setting of Cesàro bounded operators of fractional order, thus generalizing the results substantially. In passing, we obtain a generalization of the mean ergodic theorem in our framework. Examples are given to illustrate the theory. © 2022, The Hebrew University of Jerusalem.
Más información
| Título según WOS: | Poisson Equation and Discrete One-Sided Hilbert Transform for (C, α)-Bounded Operators |
| Título según SCOPUS: | Poisson equation and discrete one-sided Hilbert transform for (C, ?)-bounded operators |
| Título de la Revista: | Israel Journal of Mathematics |
| Volumen: | 253 |
| Número: | 2 |
| Editorial: | Hebrew University Magnes Press |
| Fecha de publicación: | 2023 |
| Página de inicio: | 917 |
| Página final: | 987 |
| Idioma: | English |
| DOI: |
10.1007/s11856-022-2353-z |
| Notas: | ISI, SCOPUS |