A characterization of Lp-maximal regularity for time-fractional systems in UMD spaces and applications

Lizama, Carlos

Abstract

In this article we provide new insights into the well-posedness and maximal regularity of systems of abstract evolution equations, in the framework of periodic Lebesgue spaces of vector-valued functions. Our abstract model is flexible enough as to admit time-fractional derivatives in the sense of Liouville-Grünwald. We characterize the maximal regularity property solely in terms of R-boundedness of a block operator-valued symbol, and provide corresponding estimates. In addition, we show practical criteria that imply the R-boundedness part of the characterization. We apply these criteria to show that the Keller-Segel system, as well as a reactor model system, have Lq?Lp maximal regularity. © 2024 Elsevier Inc.

Más información

Título según WOS: A characterization of Lp-maximal regularity for time-fractional systems in UMD spaces and applications
Título según SCOPUS: A characterization of Lp-maximal regularity for time-fractional systems in UMD spaces and applications
Título de la Revista: Journal of Differential Equations
Volumen: 389
Editorial: ACADEMIC PRESS INC
Fecha de publicación: 2024
Página de inicio: 257
Página final: 284
Idioma: English
DOI:

10.1016/j.jde.2024.01.021

Notas: ISI, SCOPUS