CONVERGENCE OF A FINITE VOLUME SCHEME FOR NONLOCAL REACTION-DIFFUSION SYSTEMS MODELLING AN EPIDEMIC DISEASE

Bendahmane M.; Sepúlveda M.

Abstract

A finite-volume scheme for a nonlocal three-component reaction-diffusion system modeling an epidemic disease with susceptible, infected, and recovered, individuals is analyzed. For this SIR model, the existence of solutions to the finite volume scheme and its convergence to a weak solution of the PDE is established. The convergence proof is based on deriving a series of apriori estimates and by using a general Lp compactness criterion. Finally, numerical simulations from the finite volume scheme are given.

Más información

Título según WOS: CONVERGENCE OF A FINITE VOLUME SCHEME FOR NONLOCAL REACTION-DIFFUSION SYSTEMS MODELLING AN EPIDEMIC DISEASE
Título según SCOPUS: Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease
Título de la Revista: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B
Volumen: 11
Número: 4
Editorial: AMER INST MATHEMATICAL SCIENCES-AIMS
Fecha de publicación: 2009
Página de inicio: 823
Página final: 853
Idioma: English
URL: http://www.aimsciences.org/journals/displayArticles.jsp?paperID=4069
DOI:

10.3934/dcdsb.2009.11.823

Notas: ISI, SCOPUS