Dynamic Multicore Elastic Optical Networks: A Comparative Study of Performance using Heuristics and Artificial Intelligence

PINTO-RIOS, JUAN; Leiva, Ariel; Dumas Feris, Barbara; Iglesias, Daniel; Cuevas, Catalina; Jara, Nicolas; Olivares, Ricardo; Morales, Patricia; Borquez-Paredes, Danilo; Saavedra, Gabriel; Prudenzano, F; Marciniak, M

Abstract

--- - This study evaluates a deep reinforcement learning agent against a state-of-the-art heuristic for resource allocation in dynamic multicore elastic optical networks (dynamic MCF-EON), focusing on various multicore fiber architectures. The distance between cores influences inter-core crosstalk (InC-XT), a key parameter. - The simulations considered the Eurocore topology, using three-core triangular fiber configurations and hexagonally arranged seven-core fibers. - The results show that DRL agents outperform heuristics by an average of 18% in blocking probability, particularly under specific inter-core distance conditions. This superiority is attributed to the adaptability of DRL agents learned during training. - The study suggests that DRL algorithms show promise in addressing resource allocation challenges in MCF-EON networks, even under strict constraints.

Más información

Título según WOS: ID WOS:001315628100184 Not found in local WOS DB
Título de la Revista: 2024 24TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, ICTON 2024
Editorial: IEEE
Fecha de publicación: 2024
DOI:

10.1109/ICTON62926.2024.10647659

Notas: ISI