Recovery of a Lame parameter from displacement fields in nonlinear elasticity models

Carrillo, Hugo; Waters, Alden

Abstract

We study some inverse problems involving elasticity models by assuming the knowledge of measurements of a function of the displaced field. In the first case, we have a linear model of elasticity with a semi-linear type forcing term in the solution. Under the hypothesis the fluid is incompressible, we recover the displaced field and the second Lame parameter from power density measurements in two dimensions. A stability estimate is shown to hold for small displacement fields, under some natural hypotheses on the direction of the displacement, with the background pressure fixed. On the other hand, we prove in dimensions two and three a stability result for the second Lame parameter when the displacement field follows the (nonlinear) Saint-Venant model when we add the knowledge of displaced field solution measurements. The Saint-Venant model is the most basic model of a hyperelastic material. The use of over-determined elliptic systems is new in the analysis of linearization of nonlinear inverse elasticity problems.

Más información

Título según WOS: Recovery of a Lame parameter from displacement fields in nonlinear elasticity models
Título según SCOPUS: ID SCOPUS_ID:85105353060 Not found in local SCOPUS DB
Título de la Revista: Journal of Inverse and Ill-Posed Problems
Volumen: 30
Fecha de publicación: 2022
Página de inicio: 521
Página final: 547
DOI:

10.1515/JIIP-2020-0142

Notas: ISI, SCOPUS