Neural networks for cost estimation of shell and tube heat exchangers

Durán O.; Rodríguez N.; Consalter, LA

Abstract

The objective of this paper is to develop and test a model of cost estimating for the shell and tube heat exchangers in the early design phase via the application of artificial neural networks (ANN). An ANN model can help the designers to make decisions at the early phases of the design process. With an ANN model, it is possible to obtain a fairly accurate prediction, even when enough and adequate information is not available in the early stages of the design process. This model proved that neural networks are capable of reducing uncertainties related to the cost estimation of a shell and tube heat exchangers. © 2008 Elsevier Ltd. All rights reserved.

Más información

Título según WOS: Neural networks for cost estimation of shell and tube heat exchangers
Título según SCOPUS: Neural networks for cost estimation of shell and tube heat exchangers
Título de la Revista: EXPERT SYSTEMS WITH APPLICATIONS
Volumen: 36
Número: 4
Editorial: PERGAMON-ELSEVIER SCIENCE LTD
Fecha de publicación: 2009
Página de inicio: 7435
Página final: 7440
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0957417408006325
DOI:

10.1016/j.eswa.2008.09.014

Notas: ISI, SCOPUS