An extragradient projection method for strongly quasiconvex equilibrium problems with applications

Lara, F; Marcavillaca, R. T.; Yen, L. H.

Abstract

We discuss an extragradient projection method for dealing with equilibrium problems involving bifunctions which are strongly quasiconvex on its second argument. The algorithm combines a proximal step with a subgradient projection step using a generalized subdifferential, which is especially useful for dealing with this class of generalized convex functions, and with a line search. As a consequence, the usual assumption regarding the relationship between the Lipschitz-type parameter and the modulus of strong quasiconvexity is no longer needed for ensuring the convergence of the generated sequence to the solution of the problem. Furthermore, numerical experiments for classes of nonconvex mixed variational inequalities based on fractional programming problems are given in order to show the performance of our proposed method. © The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2024.

Más información

Título según WOS: An extragradient projection method for strongly quasiconvex equilibrium problems with applications
Título según SCOPUS: An extragradient projection method for strongly quasiconvex equilibrium problems with applications
Título de la Revista: Computational and Applied Mathematics
Volumen: 43
Número: 3
Editorial: Springer Nature
Fecha de publicación: 2024
Idioma: English
DOI:

10.1007/s40314-024-02626-5

Notas: ISI, SCOPUS