Solutions with spikes at the boundary for a 2D nonlinear Neumann problem with large exponent
Abstract
We consider the elliptic equation - ? u + u = 0 in a bounded, smooth domain O in R2, subject to the nonlinear Neumann boundary condition frac(? u, ? ?) = up. Here p > 1 is a large parameter. We prove that given any integer m = 1 there exist at least two families of solutions up developing exactly m peaks ?i ? ? O, in the sense that p up ? 2 e p ?i = 1 m d?i, as p ? 8. © 2009 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | Solutions with spikes at the boundary for a 2D nonlinear Neumann problem with large exponent | 
| Título según SCOPUS: | Solutions with spikes at the boundary for a 2D nonlinear Neumann problem with large exponent | 
| Título de la Revista: | JOURNAL OF DIFFERENTIAL EQUATIONS | 
| Volumen: | 246 | 
| Número: | 8 | 
| Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE | 
| Fecha de publicación: | 2009 | 
| Página de inicio: | 2991 | 
| Página final: | 3037 | 
| Idioma: | English | 
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022039609000667 | 
| DOI: | 
 10.1016/j.jde.2009.02.001  | 
| Notas: | ISI, SCOPUS |