Solutions with spikes at the boundary for a 2D nonlinear Neumann problem with large exponent

Castro, H

Abstract

We consider the elliptic equation - ? u + u = 0 in a bounded, smooth domain O in R2, subject to the nonlinear Neumann boundary condition frac(? u, ? ?) = up. Here p > 1 is a large parameter. We prove that given any integer m = 1 there exist at least two families of solutions up developing exactly m peaks ?i ? ? O, in the sense that p up ? 2 e p ?i = 1 m d?i, as p ? 8. © 2009 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Solutions with spikes at the boundary for a 2D nonlinear Neumann problem with large exponent
Título según SCOPUS: Solutions with spikes at the boundary for a 2D nonlinear Neumann problem with large exponent
Título de la Revista: JOURNAL OF DIFFERENTIAL EQUATIONS
Volumen: 246
Número: 8
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2009
Página de inicio: 2991
Página final: 3037
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0022039609000667
DOI:

10.1016/j.jde.2009.02.001

Notas: ISI, SCOPUS