Solutions with spikes at the boundary for a 2D nonlinear Neumann problem with large exponent
Abstract
We consider the elliptic equation - ? u + u = 0 in a bounded, smooth domain O in R2, subject to the nonlinear Neumann boundary condition frac(? u, ? ?) = up. Here p > 1 is a large parameter. We prove that given any integer m = 1 there exist at least two families of solutions up developing exactly m peaks ?i ? ? O, in the sense that p up ? 2 e p ?i = 1 m d?i, as p ? 8. © 2009 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Solutions with spikes at the boundary for a 2D nonlinear Neumann problem with large exponent |
Título según SCOPUS: | Solutions with spikes at the boundary for a 2D nonlinear Neumann problem with large exponent |
Título de la Revista: | JOURNAL OF DIFFERENTIAL EQUATIONS |
Volumen: | 246 |
Número: | 8 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2009 |
Página de inicio: | 2991 |
Página final: | 3037 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022039609000667 |
DOI: |
10.1016/j.jde.2009.02.001 |
Notas: | ISI, SCOPUS |