K-mer-based machine learning method to classify LTR-retrotransposons in plant genomes

Orozco-Arias, Simon; Candamil-Cortes, Mariana S.; Jaimes, Paula A.; Pina, Johan S.; Tabares-Soto, Reinel; Guyot, Romain; Isaza, Gustavo

Abstract

Every day more plant genomes are available in public databases and additional massive sequencing projects (i.e., that aim to sequence thousands of individuals) are formulated and released. Nevertheless, there are not enough automatic tools to analyze this large amount of genomic information. LTR retrotransposons are the most frequent repetitive sequences in plant genomes; however, their detection and classification are commonly performed using semi-automatic and time-consuming programs. Despite the availability of several bioinformatic tools that follow different approaches to detect and classify them, none of these tools can individually obtain accurate results. Here, we used Machine Learning algorithms based on k-mer counts to classify LTR retrotransposons from other genomic sequences and into lineages/families with an F1-Score of 95%, contributing to develop a free-alignment and automatic method to analyze these sequences.

Más información

Título según WOS: ID WOS:000651768000006 Not found in local WOS DB
Título de la Revista: PeerJ
Volumen: 9
Editorial: PEERJ INC
Fecha de publicación: 2021
DOI:

10.7717/peerj.11456

Notas: ISI