Radial solutions of an elliptic equation with singular nonlinearity
Abstract
For the equation- ? u + u - ß = u p, u > 0 in B R, u = 0 on ? B R, where B R ? R N, 0 < ß < 1 and 1 < p < frac(N + 2, N - 2) if N = 3, 1 < p < + 8 if N = 2, we show that there is over(R, ¯) > 0 such that a radial solution u R exists if and only if 0 < R = over(R, ¯). It is unique in the class of radial solutions and u R ' (R) < 0 if R < over(R, ¯), while u over(R, ¯) ' (over(R, ¯)) = 0. We also give a variational characterization of u over(R, ¯). © 2008 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Radial solutions of an elliptic equation with singular nonlinearity |
Título según SCOPUS: | Radial solutions of an elliptic equation with singular nonlinearity |
Título de la Revista: | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
Volumen: | 352 |
Número: | 1 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2009 |
Página de inicio: | 360 |
Página final: | 379 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022247X08005271 |
DOI: |
10.1016/j.jmaa.2008.05.033 |
Notas: | ISI, SCOPUS |