Effect of surfactants on the sorption-desorption, degradation, and transport of chlorothalonil and hydroxy-chlorothalonil in agricultural soils

Baez, Maria E.; Sarkar, Binoy; Pena, Aranzazu; Vidal, Jorge; Espinoza, Jeannette; Fuentes, Edwar

Abstract

The fungicide chlorothalonil (CTL) and its metabolite hydroxy chlorothalonil (OH-CTL) constitute a risk of soil and water contamination, highlighting the need to find suitable soil remediation methods for these compounds. Surfactants can promote the bioavailability of organic compounds for enhanced microbial degradation, but the performance depends on soil and surfactant properties, sorption-desorption equilibria of contaminants and surfactants, and possible adverse effects of surfactants on microorganisms. This study investigated the influence of five surfactants [e.g., Triton X-100 (TX-100), sodium dodecyl sulphate (SDS), hexadecyltrimethylammonium bromide (HDTMA), Aerosol 22 and Tween 80] on the sorption-desorption, degradation, and mobility of CTL and OH-CTL in two volcanic and one non-volcanic soil. Sorption and desorption of fungicides depended on the sorption of surfactants on soils, surfactants' capacity to neutralize the net negative charge of soils, surfactants' critical micellar concentration, and pH of soils. HDTMA was strongly adsorbed on soils, which shifted the fungicide sorption equilibria by increasing the distribution coefficient (Kd) values. Contrarily, SDS and TX-100 lowered CTL and OH-CTL sorption on soils by decreasing the Kd values, which resulted in an efficient extrac-tion of the fungicide compounds from soil. SDS increased the degradation of CTL, especially in the non-volcanic soil (DT50 values were 14 and 7 days in natural and amended soils, with final residues <7% of the initial dose), whereas TX-100 enabled an early start and sustenance of OH-CTL degradation in all soils. CTL and OH-CTL stimulated soil microbial activities without noticeable deleterious effects of the surfactants. SDS and TX-100 also reduced the vertical transport of OH-CTL in soils. Results of this study could be extended to soils in other regions of the world because the tested soils represent widely different physical, chemical, and biological properties.

Más información

Título según WOS: ID WOS:000980792200001 Not found in local WOS DB
Título de la Revista: ENVIRONMENTAL POLLUTION
Volumen: 327
Editorial: ELSEVIER SCI LTD
Fecha de publicación: 2023
DOI:

10.1016/j.envpol.2023.121545

Notas: ISI