On the Uncertainty Modelling for Linear Continuous-Time Systems Utilising Sampled Data and Gaussian Mixture Models

Orellana, Rafael; Coronel, Maria; CARVAJAL-GUERRA, RODRIGO JAVIER; Delgado, Ramon; Escarate, Pedro; AGUERO-VASQUEZ, JUAN CARLOS

Abstract

In this paper a Maximum Likelihood estimation algorithm for model error modelling in a continuous-time system is developed utilising sampled data and a Stochastic Embedding approach. Orthonormal basis functions are used to model both the continuous-time nominal model and the error-model. The stochastic properties of the error-model distribution are defined by using a Gaussian mixture model. For the estimation of the nominal model and the error-model distribution we develop a technique based on the Expectation-Maximization algorithm using sampled data from independent experiments. The benefits of our proposal are illustrated via numerical simulations. (C) Copyright 2021 The Authors.

Más información

Título según WOS: On the Uncertainty Modelling for Linear Continuous-Time Systems Utilising Sampled Data and Gaussian Mixture Models
Título según SCOPUS: ID SCOPUS_ID:85118112875 Not found in local SCOPUS DB
Título de la Revista: IFAC-PapersOnLine
Volumen: 54
Fecha de publicación: 2021
Página de inicio: 589
Página final: 594
DOI:

10.1016/J.IFACOL.2021.08.424

Notas: ISI, SCOPUS