Identification and Model Predictive Control of an experimental adaptive optics setup utilizing Kautz basis functions
Abstract
In this paper, we develop an identification technique based on continuous-time Kautz basis functions and Maximum Likelihood estimation from discrete-time data to obtain a continuous-time model of a laboratory adaptive optics system. We illustrate the proposed identification method using synthetic data and experimental data of a laboratory adaptive optics setup. Finally we utilize the estimated model to develop a Model Predictive Control strategy that considers the deformable mirror actuation constraints. We illustrate the benefits of the model predictive control strategy via simulations and compare it against the classical Proportional-Integral controller.
Más información
Título según WOS: | ID WOS:000850783300040 Not found in local WOS DB |
Título según SCOPUS: | ID SCOPUS_ID:85100066644 Not found in local SCOPUS DB |
Título de la Revista: | Proceedings of SPIE - The International Society for Optical Engineering |
Volumen: | 11448 |
Fecha de publicación: | 2020 |
DOI: |
10.1117/12.2561097 |
Notas: | ISI, SCOPUS |