Finite element approximation of the elasticity spectral problem on curved domains

Hernandez, E.

Abstract

We analyze the finite element approximation of the spectral problem for the linear elasticity equation with mixed boundary conditions on a curved non-convex domain. In the framework of the abstract spectral approximation theory, we obtain optimal order error estimates for the approximation of eigenvalues and eigenvectors. Two kinds of problems are considered: the discrete domain does not coincide with the real one and mixed boundary conditions are imposed. Some numerical results are presented. © 2008 Elsevier B.V. All rights reserved.

Más información

Título según WOS: Finite element approximation of the elasticity spectral problem on curved domains
Título según SCOPUS: Finite element approximation of the elasticity spectral problem on curved domains
Título de la Revista: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
Volumen: 225
Número: 2
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2009
Página de inicio: 452
Página final: 458
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0377042708004172
DOI:

10.1016/j.cam.2008.08.011

Notas: ISI, SCOPUS