Minimal orthonormal bases for pure quantum state estimation
Abstract
We present an analytical method to estimate pure quantum states using a minimum of three measurement bases in any finite -dimensional Hilbert space. This is optimal as two bases are insufficient to construct an informationally complete positive operator -valued measurement (ICPOVM) for pure states. We demonstrate our method using a binary tree structure, providing an algorithmic path for implementation. The performance of the method is evaluated through numerical simulations, showcasing its effectiveness for quantum state estimation.
Más información
| Título según WOS: | Minimal orthonormal bases for pure quantum state estimation |
| Título según SCOPUS: | ID SCOPUS_ID:85185766067 Not found in local SCOPUS DB |
| Título de la Revista: | QUANTUM |
| Volumen: | 8 |
| Editorial: | VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF |
| Fecha de publicación: | 2024 |
| Idioma: | English |
| Notas: | ISI, SCOPUS - ISI |