Least squares estimation for the Ornstein-Uhlenbeck process with small Hermite noise
Abstract
We consider the problem of the drift parameter estimation for a non-Gaussian long memory OrnsteinUhlenbeck process driven by a Hermite process. To estimate the unknown parameter, discrete time high-frequency observations at regularly spaced time points and the least squares estimation method are used. By means of techniques based on Wiener chaos and multiple stochastic integrals, the consistency and the limit distribution of the least squares estimator of the drift parameter have been established. To show the computational implementation of the obtained results, different simulation examples are given. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Más información
| Título según WOS: | Least squares estimation for the Ornstein-Uhlenbeck process with small Hermite noise |
| Título según SCOPUS: | Least squares estimation for the OrnsteinUhlenbeck process with small Hermite noise |
| Título de la Revista: | Statistical Papers |
| Volumen: | 65 |
| Número: | 7 |
| Editorial: | Springer Science and Business Media Deutschland GmbH |
| Fecha de publicación: | 2024 |
| Página de inicio: | 4745 |
| Página final: | 4766 |
| Idioma: | English |
| DOI: |
10.1007/s00362-024-01579-5 |
| Notas: | ISI, SCOPUS |