ON THE CONSISTENCY OF THE LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE RENEWAL CASE
Abstract
In this study, we prove the strong consistency of the least squares esti-mator in a random sampled linear regression model with long-memory noise and an independent set of random times given by renewal process sampling. Addition-ally, we illustrate how to work with a random number of observations up to time T = 1. A simulation study is provided to illustrate the behavior of the different terms, as well as the performance of the estimator under various values of the Hurst parameter H.
Más información
Título según WOS: | ON THE CONSISTENCY OF THE LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE RENEWAL CASE |
Título de la Revista: | STATISTICA SINICA |
Volumen: | 33 |
Número: | 1 |
Editorial: | STATISTICA SINICA |
Fecha de publicación: | 2023 |
Página de inicio: | 1 |
Página final: | 26 |
DOI: |
10.5705/ss.202020.0457 |
Notas: | ISI |