ON THE CONSISTENCY OF THE LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE RENEWAL CASE

Araya, Hector; Bahamonde, Natalia; Fermin, Lisandro; Roa, Tania; Torres, Soledad

Abstract

In this study, we prove the strong consistency of the least squares estimator in a random sampled linear regression model with long-memory noise and an independent set of random times given by renewal process sampling. Additionally, we illustrate how to work with a random number of observations up to time T = 1. A simulation study is provided to illustrate the behavior of the different terms, as well as the performance of the estimator under various values of the Hurst parameter H. © 2023 Institute of Statistical Science. All rights reserved.

Más información

Título según WOS: ON THE CONSISTENCY OF THE LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE RENEWAL CASE
Título según SCOPUS: ON THE CONSISTENCY OF THE LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE RENEWAL CASE
Título de la Revista: Statistica Sinica
Volumen: 33
Número: 1
Editorial: Institute of Statistical Science
Fecha de publicación: 2023
Página de inicio: 1
Página final: 26
Idioma: English
DOI:

10.5705/ss.202020.0457

Notas: ISI, SCOPUS