Local hidden variable values without optimization procedures

Goyeneche, Dardo; Bruzda, Wojciech; Turek, Ondrej; Alsina, Daniel; Zyczkowski, Karol

Abstract

The problem of computing the local hidden variable (LHV) value of a Bell inequality plays a central role in the study of quantum nonlocality. In particular, this problem is the first step towards characterizing the LHV polytope of a given scenario. In this work, we establish a relation between the LHV value of bipartite Bell inequalities and the mathematical notion of excess of a matrix. Inspired by the well developed theory of excess, we derive several results that directly impact the field of quantum nonlocality. We show infinite families of bipartite Bell inequalities for which the LHV value can be computed exactly, without needing to solve any optimization problem, for any number of measurement settings. We also find tight Bell inequalities for a large number of measurement settings.

Más información

Título según WOS: Local hidden variable values without optimization procedures
Título según SCOPUS: ID SCOPUS_ID:85171166350 Not found in local SCOPUS DB
Título de la Revista: Quantum
Volumen: 7
Fecha de publicación: 2023
Página de inicio: 1
Página final: 14
DOI:

10.22331/Q-2023-02-02-911

Notas: ISI, SCOPUS