Equiangular tight frames and unistochastic matrices
Abstract
We demonstrate that a complex equiangular tight frame composed of N vectors in dimension d, denoted ETF (d, N), exists if and only if a certain bistochastic matrix, univocally determined by N and d, belongs to a special class of unistochastic matrices. This connection allows us to find new complex ETFs in infinitely many dimensions and to derive a method to introduce non-trivial free parameters in ETFs. We present an explicit six-parametric family of complex ETF(6,16), which defines a family of symmetric POVMs. Minimal and maximal possible average entanglement of the vectors within this qubit-qutrit family are described. Furthermore, we propose an efficient numerical procedure to compute the unitary matrix underlying a unistochastic matrix, which we apply to find all existing classes of complex ETFs containing up to 20 vectors.
Más información
Título según WOS: | ID WOS:000402553500003 Not found in local WOS DB |
Título de la Revista: | JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL |
Volumen: | 50 |
Número: | 24 |
Editorial: | IOP PUBLISHING LTD |
Fecha de publicación: | 2017 |
DOI: |
10.1088/1751-8121/aa6e16 |
Notas: | ISI |