Equiangular tight frames and unistochastic matrices

Goyeneche, Dardo; Turek, Ondrej

Abstract

We demonstrate that a complex equiangular tight frame composed of N vectors in dimension d, denoted ETF (d, N), exists if and only if a certain bistochastic matrix, univocally determined by N and d, belongs to a special class of unistochastic matrices. This connection allows us to find new complex ETFs in infinitely many dimensions and to derive a method to introduce non-trivial free parameters in ETFs. We present an explicit six-parametric family of complex ETF(6,16), which defines a family of symmetric POVMs. Minimal and maximal possible average entanglement of the vectors within this qubit-qutrit family are described. Furthermore, we propose an efficient numerical procedure to compute the unitary matrix underlying a unistochastic matrix, which we apply to find all existing classes of complex ETFs containing up to 20 vectors.

Más información

Título según WOS: ID WOS:000402553500003 Not found in local WOS DB
Título de la Revista: JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL
Volumen: 50
Número: 24
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 2017
DOI:

10.1088/1751-8121/aa6e16

Notas: ISI