Self-Supervised Motion-Corrected Image Reconstruction Network for 4D Magnetic Resonance Imaging of the Body Trunk

Kuestner, Thomas; Pan, Jiazhen; Gilliam, Christopher; Qi, Haikun; Cruz, Gastao; Hammernik, Kerstin; Blu, Thierry; Rueckert, Daniel; Botnar, Rene; Prieto, Claudia; Gatidis, Sergios

Abstract

Respiratory motion can cause artifacts in magnetic resonance imaging of the body trunk if patients cannot hold their breath or triggered acquisitions are not practical. Retrospective correction strategies usually cope with motion by fast imaging sequences under free-movement conditions followed by motion binning based on motion traces. These acquisitions yield sub-Nyquist sampled and motion-resolved k-space data. Motion states are linked to each other by non-rigid deformation fields. Usually, motion registration is formulated in image space which can however be impaired by aliasing artifacts or by estimation from low-resolution images. Subsequently, any motion-corrected reconstruction can be biased by errors in the deformation fields. In this work, we propose a deep-learning based motion-corrected 4D (3D spatial + time) image reconstruction which combines a non-rigid registration network and a 4D reconstruction network. Non-rigid motion is estimated in k-space and incorporated into the reconstruction network. The proposed method is evaluated on in-vivo 4D motion-resolved magnetic resonance images of patients with suspected liver or lung metastases and healthy subjects. The proposed approach provides 4D motion-corrected images and deformation fields. It enables a similar to 14x accelerated acquisition with a 25fold faster reconstruction than comparable approaches under consistent preservation of image quality for changing patients and motion patterns.

Más información

Título según WOS: Self-Supervised Motion-Corrected Image Reconstruction Network for 4D Magnetic Resonance Imaging of the Body Trunk
Título de la Revista: APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING
Volumen: 11
Número: 1
Editorial: Now Publishers Inc.
Fecha de publicación: 2022
DOI:

10.1561/116.00000039

Notas: ISI