Biclique immersions in graphs with independence number 2

Botler, F.; JIMENEZ-RAMIREZ, ANGEL ANTONIO; Lintzmayer, C. N.; Pastine, A.; Quiroz, Daniel A.; Sambinelli, M

Abstract

The analogue of Hadwiger's conjecture for the immersion relation states that every graph G contains an immersion of K?(G). For graphs with independence number 2, this is equivalent to stating that every such n-vertex graph contains an immersion of K?n/2?. We show that every n-vertex graph with independence number 2 contains every complete bipartite graph on ?n/2? vertices as an immersion. © 2024 Elsevier Ltd

Más información

Título según WOS: Biclique immersions in graphs with independence number 2
Título según SCOPUS: Biclique immersions in graphs with independence number 2
Título de la Revista: European Journal of Combinatorics
Volumen: 122
Editorial: Academic Press
Fecha de publicación: 2024
Idioma: English
DOI:

10.1016/j.ejc.2024.104042

Notas: ISI, SCOPUS