Biclique immersions in graphs with independence number 2

Botler, F.; JIMENEZ-RAMIREZ, ANGEL ANTONIO; Lintzmayer, C. N.; Pastine, A.; Quiroz, Daniel A.; Sambinelli, M.

Abstract

The analogue of Hadwiger's conjecture for the immersion relation states that every graph G contains an immersion of K-chi(G). For graphs with independence number 2, this is equivalent to stating that every such n-vertex graph contains an immersion of K-(sic)n/2(sic). We show that every n-vertex graph with independence number 2 contains every complete bipartite graph on (sic)n/2(sic) vertices as an immersion. (c) 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Más información

Título según WOS: Biclique immersions in graphs with independence number 2
Título según SCOPUS: ID SCOPUS_ID:85201008534 Not found in local SCOPUS DB
Volumen: 122
Fecha de publicación: 2024
Idioma: English
DOI:

10.1016/j.ejc.2024.104042

Notas: ISI, SCOPUS